——

INURURIOP R

_ DTG

FILE COPY

PEIBNERERL N s

D-A221 471

Bt 4




UMIACS-TR-90-23
CS-TR-2410

February 1990

. Accession For

| NTIS GRAgT
Knowledge Representation in PARKA* DTIC TAB
Lee Spectort, James A. Hendler, and Matthew P. Evettt gﬁi:if"nd
Institute for Advanced Computer Studies and )
Department of Computer Science B
University of Maryland S
~~Nege Park, MD 20742 e
STATEMENT "A" per D. Hughes Avairoro o
ONR/Code 11SP av il onige
TELECON 5/14/90 VG Dist Speclal
ABSTRACT £ / /

-
This paper describes a frame-based knowledge representation system called PARKA
which runs on the Connection Machine. The PARKA language was designed to take advan-
tage of the Connection Machine architecture in order to provide extremely fast query process-
ing capabilities. While the primary goal in PARKA's design was to explore the use of mas-
sive parallelism in symbolic knowledge representation, we have also tried to respond to many
of the criticisms and to take advantage of many of the advances documented in the literature of
frame languages. PARKA provides a principled approach to multiple inheritance based on the
work of Touretzky [21], and a new mechanism for the representation of part/whole relations.
In addition, we have made efforts to make the intended meanings of PARKA representations
clear from the perspective of work in the philosophy of language. The result is practical
representation system that can run very quickly on parallel hardware. A specification of the
syntax of the PARKA language is provided as an appendix. / ',
AN

RO

L4
1Y

‘rom

*This work was partially supported by NSF grant IRI-8907890 and ONR grant N00014-88-K-0560. Additional support was pro-
vided by the University of Maryland Systems Research Center.

tDepantment of Computer Science, University of Maryland, College Park, MD 20742.




1 INTRODUCTION 2

67-
R
-
n
t
! 4 -4
m
e
r 3 L
.
L]
e 2°7T
c
0
n 4
d
s
0 3 e S A —— ———
18 a6 165 645 2565 10245 20005 28005

Net Stze (* noges)

L‘- parallel, Hght 7, Top Down o= Serifai, Hght 7. Top Down J

Figure 1: A comparison of parallel and serial runtimes for top-down inheri-
tance queries.

1 Introduction

PARKA is a frame-based knowledge representation system with a massively
parallel implementation on a Connection Machine. The PARKA language
was designed to take advantage of the Connection Machine architecture in
order to provide extremely fast query processing capabilities. The initial
PARKA implementation was semantically simple but displayed dramatic
speed improvements over its serial version. For example, simple inheritance
queries (using a breadth-first ancestor ordering) required an amount of time
proportional only to the depth of the knowledge representation hierarchy.
Queries on even our largest (32000 frame) knowledge bases generally required
less than 1 second to compute. A comparison of the serial and parallel run
times for queries in randomly generated knowledge bases appears in Fig-
ure 1. The graph shows timings of the parallel implementation and those of
a stripped down version of the serial implementation. The full serial version.
which includes all of PARKA'’s features, type checking, etc., runs approxi-
mately 10 times slower. (For a discussion of these and related results see [6].)




1 INTRODUCTION 3

Encouraged by the speed of our first Connection Machine implementa-
tion, we set out to make PARKA into a semantically well-grounded and
useful knowledge representation tool. Implementation constraints prevented
us from adopting pre-existing formalisms wholesale, or from adding “bells
and whistles” without careful consideration. But while the primary goal
in PARKA'’s design was to explore the use of massive parallelism in frame
systems, we wished also to respond to many of the criticisms and to take
advantage of many of the advances documented in the literature of frame
languages. In addition, we wanted to make the intended meanings of PARKA
representations clear from the perspective of work in the philosophy of lan-
guage. The result is the language specification given in this paper. A serial
prototype version of the full PARKA language has been written in Common
Lisp. The parallel version is currently being built as an extension of our first
Connection Machine implementation.

PARKA represents the references of category and individual terms by
specifying descriptions of the category members and individuals to which
such terms apply. (PARKA currently has no assertional component, in the
sense of [2].) Although the descriptive facilities are not so elaborate as those
of several previous systems (e.g., KL-ONE [3]), great care was taken in the
design of those constructs that are provided. For example, PARKA provides
a principled approach to multiple inheritance based on the work of Touretzky
[21], and a new mechanism for the representation of part/whole relations. We
feel that PARKA's facilities will be useful for a wide range of Al applications.
(See the Conclusions for a brief discussion of the differences between PARK A
and previous frame systems.)

PARKA's speed derives from its ability to perform certain types of in-
ferences using parallel message-passing techniques [6]. Most PARKA queries
require an amount of processing time proportional to the depth (and inde-
pendent of the breadth) of ~ knowledge representation hierarchy. Since Al
hierarchies tend to be w e and shallow, this means that query processing
time is essentially independ - - of knowledge base size. The price for this per-
formance is that most structural information must be represented explicitly.
This requirement precludes uses of indirection, implicit knowledge gener-
ated at query time, and procedural attachment found in other systems. We
can achieve similar effects, however, through the use of topology constraints
enforced at knowledge base update time. A PARKA topology constraint in-




2 BASIC STRUCTURES 4

teracts with the system’s knowledge base update procedures in order to make
some given relationship explicit. The existence of a constraint can cause the
system to perform integrity checks (and to reject an update if a check is
not satisfied) and sometimes to add or delete links, create new frames, etc.
As a result, many of our knowledge base update procedures are relatively
expensive. This is a tradeoff we are willing to make for the sake of high
efficiency queries, particularly since we envision the system’s applications as
being query-intensive and update-rare.

2 Basic Structures

The primitive representations in a PARKA knowledge base (KB) are frames.
(We use the term “frames” because our structures bear significant resem-
blance to the “frames” of previous systems (e.g., [14, 18]), although there
are also significant differences.) Consistent with standard terminology, a
PARKA frame consists of a set of named, typed pointers called slots. The
target of a slot’s pointer is referred to as that slot’s value, and the value is
said to fill the slot. A slot can either be filled with a symbol or (more usually)
with a pointer to another frame.

Each frame has a distinguished slot called name, which must be filled
with a unique symbol. A frame represents a description of the referent of the
term (the symbol) that fills its name slot. In certain cases the description
can also be thought of as “picking out the reference” (in the sense of [12]) of
the given term, but we do not claim that the notion of reference can thereby
be reduced to description.! Frames come in two basic varieties, individuals
and categories. Category frames describe the referents of category terms such
as dog, color, or philosopher. Individual frames describe the referents of
names used to refer to specific individuals in the world, such as Fido, cyan.
or Aristotle.

Our notion of a category is different from that of a set, class, or a KL-
ONE Generic Concept [3]. Set-theoretic and classificatory concerns are, in
PARKA, of secondary importance to the description of the referents of the
terms which name the frames. This is an important distinction because it

This is a technical issue in the philosophy of language with which the casual reader
need not be concerned. Those interested should see [12]




2 BASIC STRUCTURES 5

is our position that such knowledge cannot be adequately (or at least not
compactly) represented by sets of necessary or sufficient conditions. This
view was motivated by the considerations raised in work on the philosophy
of language (such as [12] and [17]) and contrasts markedly with the view
taken in work on KL-ONE [3]. We do not wish to digress into a philosophi-
cal discussion in this descriptive paper, but it should be noted that half of our
view - that the conditions given in category descriptions are not to be taken
as necessary - is implicit in most languages that allow the specification of
exceptions to property inheritance. The problems which result from taking
this position too far (i.e., by not providing any facilities for specifying that
parts of descriptions are necessary or sufficient) have been explored by Brach-
man in [4]. PARKA avoids these problems by means of other mechanisms
discussed below.

We view the filling of a category’s slot as the addition of a property at-
tribution to a description of the referents of a term. Hence the slot-values of
a category and its position in the isa hierarchy (see below) can be thought
of as describing a “typical” member of the given category. However, since
most slot values can be overridden the descriptions are not normally neces-
sary conditions for category membership (see, however, “Definitional Slots”
and “Restrictions” below). Since category descriptions are not assumed to
be complete, we also do not hold that such descriptions are sufficient condi-
tions for category membership. There are some cases wherein we want cat-
egory descriptions to behave as class descriptions (defined via set-theoretic
constructs) but this is the exception rather than the rule (see the section
“Set-Constructor Categories™).

Frames are connected to one another not only by slots, but also by struc-
tures called isa links. Isa links are used to represent category membership
and category/sub-category relations. An isa link’s source can be either a cat-
egory or an individual, while its destination must be a category. Note that
we use “isa” in cases similar to those wherein others would use “instance”
- we represent category membership by an isa link from an individual to a
category. The set of isa links in any PARKA KB must form a directed acyclic
graph (i.e., multiple inheritance is permissible but inheritance cycles are not ).
The user may pose queries about the category relationships encoded in the
isa hierarchy, but more frequently these relationships are used for slot value
inheritance, as discussed in the next section.




3 INHERITANCE BY INFERENTIAL DISTANCE ORDERING 6

As mentioned above, a slot has not only a value, but also a type, which
must be either SIMPLE, DEFINITIONAL, or RESTRICTION. If a cate-
gory’s slot is not simple then its value is a constraint on the values that the
category’s isa descendants may have for the given siot. This is explained
further in the sections “Definitional Slots” and “Category Valued Slots and
Restrictions” below.

3 Inheritance by Inferential Distance Or-
dering

When a particular frame has been given a value for a particular slot then we
say that that frame is ezplicitly valued for the slot. If a frame is no# explicitly
valued for a given slot then queries for the slot value may still return a value;
the frame may inherit a value from an isa ancestor.

For example, we may have a frame elephant with a slot color that is
filled with grey, and another frame circus-elephant with no explicit value
for color. If there is an isa link from circus-elephant to elephant (and if.
for the sake of simplicity, circus-elephant has no other isa parents) then a
query for the color of circus-elephant would return grey.

Inheritance of slot values is straightforward when all of the frames in a
system have at most one isa parent; a frame inherits from the “closest” isa
ancestor that is explicitly valued for the siot in question. In the presence
of multiple isa parents, however, situations can arise which require special
treatment. Previous systems often behaved erratically or produced counter-
intuitive results in cases wherein a frame received different values from two
(or more) different isa ancestors. Various strategies are available for re-
solving such conflicts. Although some of the simplest approaches (such as
specifying that the ancestors are to be searched ‘depth first up to joins') are
adequate, for example, for inheritance in Object Oriented Programming lan-
guages (20], these strategies generally fail to resolve the semantic problems
associated with inheritance in knowledge representation hierarchies. Touret-
zky has provided a rigorous analysis of these problems, and has proposed a
solution based on what he calls the ‘Inferential Distance Ordering’ [21]. Al-
though other, more elaborate solutions have since been proposed (most no-




3 INHERITANCE BY INFERENTIAL DISTANCE ORDERING 7

tably [19]), it is Touretzky’s solution that has been implemented in PARKA
as this formulation rectifies the inappropriate behavior of previous systems
without committing to positions on tangential issues (such as how conflict-
ing evidence from disparate sources ought to be reconciled). The interested
reader is referred to Touretzky’s work for a discussion of the problems (‘re-
dundancy’ and ‘ambiguity’) and of the reasoning which lead to the Inferential

Distance Ordering; we discuss here only the implications of that work for the
behavior of PARKA.

As an example of Inferential Distance Ordering, consider a query for the
value of slot S of frame F. If F is not explicitly valued for S then the value
returned (if any) will be inherited from one of F’s isa ancestors. Suppose
that n of F’s isa ancestors (G1, G2, ..., Gn) are explicitly valued for S. If
we have two explicitly valued ancestors, Gi and Gj, such that Gi lies on an
isa path from F to Gj, then we say that Gi’s value overrides that of Gj. We
want F to inherit a value for S that is not overridden by any other value. If
there is more than one such value then the specification is ambiguous and
we do not want S to inherit any value at all. We can compute the value to
be inherited as follows:

1) Put G1, G2, ..., Gn into Ancestor-Set.

2) Remove from Ancestor-Set any frame which is an isa ancestor of
some other frame in Ancestor-Set.

3) If exactly one frame remains in Ancestor-Set then return the
value of slot S for that frame; otherwise, if all of the remaining
frames have the same value for the slot S then return that value;
otherwise, return no value.

This is not the algorithm that PARKA actually uses; it is provided only
to illustrate functionality. PARKA'’s algorithm for computing inheritance
runs in time proportional to the depth of the isa hierarchy and requires o
preprocessing or ‘collapsing’ of the isa hierarchy. (See {7] for more detail on
the implementation.)




4 DEFINITIONAL VALUES 8

4 Definitional Values

One problem with early frame systems concerns the difference between us-
ing a slot value to represent a default and using a slot value to represent
a definition [4, 24]. PARKA implements a definition as a slot value that
cannot be overridden by any isa descendants of the given frame. (A simi-
lar approach was taken in [5].) We represent this ‘non-overridability’ as a
topology constraint, implemented by making the type of the slot in question
“definitional”.

Definitional slots can be used, for example, to distinguish the sense
in which a quadrilateral’s ‘four-sided-ness’ differs from an elephant’s ‘four-
legged-ness’. The num-legs slot of elephant will be of type SIMPLE and
hence may be overridden (for the sake, say, of Clyde the three-legged ele-
phant). The num-sides slot of quadrilateral will be DEFINITIONAL and
hence its value will hold for allisa descendants of quadrilateral. All PARKA
KB updates are checked for violations of definitional slots. If violations are
found then the update is refused and an error is signaled. The time added to
KB updates is expected to be proportional to the depth of the isa hierarchy
(see [7]). Query time is unaffected.

5 Category Valued Slots and Restrictions

Slots in PARKA can be filled with at most one frame, but that frame may
be a category. In order to represent slots that have many values we have
established the representational convention that a slot filled with a category
is thought of as being ‘filled’ (in a non-technical sense and only for the sake
of a certain class of queries) by all of the individuals that are isa descendants
of the filler. For example, consider the color slot of the frame zebra. To
represent the fact that a zebra is (typically) both black and white we can
create a category frame zebra-color with two individual frames (black and
white) as isa children. When we fill the color slot of zebra with zebra-
color (as in Figure 2) we are asserting that all zebras (except those for which
this slot valuation is overridden) have all zebra-colors for their color.

In other words, the meaning of a category-valued slot in PARKA carries
with it an implicit universal quantifier. There are cases for which an implicit




5 CATEGORY VALUED SLOTS AND RESTRICTIONS

CATEGORY o{ CATEGORY
name: zebra name: zebra-color
color:

/

\

CATEGORY

CATEGORY

name: black

name: white

LT XY

Figure 2: Correct use of a category-valued slot.

CATEGORY | CATEGORY
name: dog name: dog-color
color:
CATEGORY CATEGORY
name: black name: brown
see i“ k‘ oee
CATEGORY CATEGORY
name: white name: red

Figure 3: Incorrect use of a category-valued slot.

existential quantifier might seem more appropriate. For example, consider
the color slot of the dog frame, and the dog-color category consisting of
black, white, red, and brown. If we filled the color slot with dog-color
(as in Figure 3) then we would be asserting that all dogs have all of these
colors, which is clearly not correct. What we really want to say is that the
colors of all dogs must be selected from the given category. Rather than
tampering with the convention of universal quantification, PARKA provides
an alternative mechanism for such cases.

It is often the case that we wish to describe a slot’s filler as being limited
to some set of values, without specifying any particular value for the filler in




5 CATEGORY VALUED SLOTS AND RESTRICTIONS 10

any given case. In some previous systems this has been accomplished through
the specification of predicates which valid fillers must satisfy (for example,
(18]). PARKA'’s requirements for explicitness make this kind of specification
undesirable; the use of a predicate representation would make it difficult to
take advantage of PARKA's parallelism in responding to restriction-related
queries or in checking the integrity of restrictions during updates. For this
reason the admissible values for a given slot are represented ezplicitly by
making the type of the slot RESTRICTION and by filling the slot with a
category which is an ancestor of all and only those frames that are admissible
fillers. This approach bears similarity to that taken in previous work (e.g., the
role-set restrictions in [3]), and is analogous to the specification of enumerated
data types in conventional programming languages. (This sort of comparison
has been made elsewhere [8].)

A restriction is a constraint on the fillers of the given slot for all isa de-
scendants of the frame at which the restriction is specified. If the type of the
descendant’s corresponding slot is also RESTRICTION then its filler must
be a sub-category of the category specified in the original restriction. This
sub-category then becomes a sub-restriction which further constrains all of
the fillers of the given slot for frames further down in the isa hierarchy. If the
descendant’s corresponding slot is of the type SIMPLE or DEFINITIONAL
then it must be filled with a proper sub-category or a member of the category
specified in the restriction. The integrity of all restrictions is maintained at
KB update time using an efficient parallel algorithm.

For example, returning to the “dog-color” problem, we would make the
color slot of dog a restriction with value dog-color (as shown in Figure 4).
Sub-categories of dog could provide sub-restrictions or simple values. For
instance, the color of Poodle could be restricted to being just black or
white, while the color of Irish-Setter could be set to red. Note that this
would allow a black (mutant) Irish Setter but not a purple one (due to the
restriction of the color slot of dog). Definitional values could be provided
here as well, though it would be difficult to conjure up a case in which a dog’s
color is definitional wiih respect to some category term. The representations
for individual dogs could also specify sub-restrictions to express incomplete
information, or simple or definitional values in appropriate circumstances.

As another example of the utility of restrictions, consider a category give-
action with three slots giver, recipient, and object. We could specify a re-




5 CATEGORY VALUED SLOTS AND RESTRICTIONS

CATEGORY

name: dog

color: (restriction)

CATEGORY

name: dog-color

CATEGORY

ol CATEGORY

name: Poodle

name: Poodle-color

color: (restriction)

con

CATEGORY

name: Irish-Setter

color:

isa

CATEGORY

name: Mutant-Irish-Setter

isa

11

CATEGORY

name: brown

isa

CATEGORY

name: red

CATEGORY

name: white

CATEGORY

color:

see

Figure 4:

name: black

see

Restrictions on dog colors.




6 SET-CONSTRUCTOR CATEGORIES 12

striction for the giver and recipient slots consisting of the category animate-
obj. This would dissallow the creation of a give-action in which the giver
was, say, an umbrella stand. More interestingly, we could create an isa child
of give-action called pay-action. By specifying a restriction of the cate-
gory monetary-value on the object slot of pay-action we dissallow the
classification of non-monetary givings as pay-actions. Further, if no value is
specified as the recipient of some individual pay-action, we will at least have
the incomplete information that the recipient must be animate. We could
create further specializations for payings by credit card, givings to charities,
etc. Restrictions can thus be seen as providing mechanisms for object clas-
sification, for the representation of incomplete information, and also for the
representation of action specialization.

There is a high degree of similarity between restrictions and definitional
values. In fact, definitional values are really just restrictions to single-valued
categories. We have kept definitional values and restrictions distinct mainly
because definitional values seem to have a privileged epistemological sta-
tus; although there is functional similarity between the two mechanisms it
nonetheless seems natural to think of definitions and restrictions as different
things. Further, we can optimize our implementation somewhat by singling
out definitional values as a special case.

An additional issue regarding category-valued slots and restr.ctions in-
volves cardinality. In some earlier systems it was possible to specify that a
slot must be filled by a certain number of individuals, or that the number
of individuals must fall within some given range. (These specifications have
sometimes been called cardinality facets [8] {11].) This is clearly a desir-
able functionality but it is currently beyond PARKA’s capabilities. If the
cardinalities involved are small then we can in some cases simulate the de-
sired functionality by using several slots; however, we are looking into the
development of a more elegant solution for future versions of PARKA.

6 Set-Constructor Categories

Some previous frame systems provided the user with several inheritance
methods and allowed the user to specify a different type of inheritance for
each slot in a frame [11]. For example, ‘Union’ inheritance combined all of




6 SET-CONSTRUCTOR CATEGORIES 13

the values for the given slot from all of the given frame’s isa ancestors. Al-
though this kind of specification appears to be very useful, PARKA allows
only one kind of inheritance, and that kind of inheritance accesses at most
one inherited value. Nonetheless, much of the functionality of ‘union’ inher-
itance, and more, can be captured in PARKA with a topology constraint
mechanism called a set-constructor category.

PARKA has three kinds of set-constructor categories: nnion, intersection,
and set-difference. To create a union the user specifies a set of constituent
categories and a new name. The system then creates a new category that
represents the union of the constituents. Initially this just means that the
new framme must be made to be an isa parent of each of the constituents,
and that all common parents of the constituents become isa ancestors of the
new frame. A set-constructor category, however, is self-maintaining. This
means that when later changes are made to the knowledge base, the system
will always react with modifications to insure that the new frame is still
an accurate representation of the set-theoretic union (or intersection or set-
difference) of its constituents.

For example, suppose we create a union, MotionPicture, of categories
FilmMovie and Video, and that we later add isa links to make some
other category, TemporalArtObject, an isa parent oi both FilmMovie
and Video. Such a configuration of links, as shown in figure 5, means that
MotionPicture is a subset of TemporalArtObject, and hence that an isa
link should be added from MotionPicture to TemporalArtObject.

PARKA automatically checks all knowledge base updates to ensure that
set-constructor categories are appropriately maintained. In particular. it
must watch for additions and deletions of isa links, and must sometimes
respond with the addition and/or deletion of other isa links.

Intersections and set-differences are similar to unions in functionality and
in update maintenance requirements. An intersection is created by specifying
a new name and a set of ~onstituent categories. The new frame is maintained
to always represent the set-theoretic intersection of the constituents. and will
have the constituents as isa parents. A set-difference is created by specifying
a positive constituent category and a negative constituent category. The set-
difference is maintained to be the subset of the positive constituent which
has no elements in the negative constituent. The set-difference frame is made




6 SET-CONSTRUCTOR CATEGORIES 14

CATEGORY
jname: TemporalAntObject

UNION (A, B)
iname: MotionPicture

| e -

CATEGORY CATEGORY

name: FilmMovie name: Video

Figure 5: Maintaining a Union.

to be an isa child of the positive component; it has no isa connection to the
negative component.

As an example of the utility of set-constructor categories, consider the
representation of the supporters of GeorgeBush as the union of Reagan-
democrats and Republicans who are not members of the ACLU. (See
Figure 6.) If Joe Shmoe joins the ACLU then the system will automatically
delete the isa link which describes him as a GOP hard-liner (and hence as a
Bush supporter).

Although many parts of the update maintenance algorithms are highly
parallelizable, and although most set-constructor categories need not even be
checked for most updates, this maintenance is PARKA's least efficient aspect.
One problem is that changes made to fix one set-constructor may mess up
another one; i.e., the update maintenance procedure’s updates need also to
be checked and responded to. Another problem is that it is possible to place
set-constructor categories at unwise positions in the hierarchy; this can cause
a poorly placed category to be checked during every (or almost every) kB
update. (For example, an intersection which is the root of the entire hierarchy
will cause this problem.) This situation is somewhat ameliorated by turning




6 SET-CONSTRUCTOR CATEGORIES

INDIVIDUAL

name: GeorgeBush

| UNTON(Reagas-dem.,GOP-Hrd. Liner)

supporters:

name: Bush-supporter

“Z
CATEGORY

name: Reagan-democrat

-

CATEGORY

name: Republican

SET-DIFFERENCE

(+:Repub; - ACLU

name: GOP-hard-liner

CATEGORY

name: ACLU-member

.o

INDIVIDUAL

name: JoeShmoe

Figure 6: Set-constructor categories in action.

15




7 AGGREGATIONS AND PART/WHOLE RELATIONS 16

off all update maintenance while building a (presumably debugged) KB; all
of the set-constructor categories can then be built in one ‘batch’ process.

We have still not fully analyzed all of the complexity issues involved in the
maintenance of set-constructor categories. The problem is obviously related
to that of computing subsumption relations amongst terms which are set-
theoretically described. That problem, in various forms, has been shown by
several authors to be intractable and in some cases undecidable ([9], [13],
(15], [16]). Our problem is somewhat different, however, because (1) in our
hierarchies all subsumption relations (except for the current update under
consideration) are represented explicitly, (2) we are working on massively
parallel hardware which allows us in some cases to trade space for time, and
(3) we expect the number of set-constructor categories to be very small in
comparison to the total number of frames in a PARKA KB. Further analysis
of these issues is one of our short-term priorities.

7 Aggregations and Part/Whole Relations

PARKA'’s philosophy of using topology constraints, maintained at update-
time, to represent knowledge-structuring information has been used to pro-
vide a mechanism for the principled and efficient representation of some
part/whole relations. The representation of part/whole relations is a sub-
field of knowledge representation with considerable subtlety and a history
of interesting, difficult problems (see, e.g. [10]). Winston et. al. have pro-
vided a classification for part/whole relations which yields six distinct types:
1. component-integral object (pedal-bike), 2. member-collection (ship-fleet ).
3. portion-mass (slice-pie), 4. stuff-object (steel-car), 5. feature-activity
(paying-shopping), and 6. place-area (Everglades-Florida) [23]. The aggre-
gation mechanism in PARKA was developed specifically to deal with the
component-integral object relation, although it may be capable of handling
other part/whole relations (particularly feature-activity) as well.

Consider the knowledge base fragment depicted in Figure 7. We have
used the components slot (which is of type RESTRICTION in all of the
cases shown) to indicate the components of the various integral objects that
are represented. The problem with this representation is that we expect part
relations and isa relations to exhibit certain transitivities that are not explicit




7 AGGREGATIONS AND PART/WHOLE RELATIONS 17

CATEGORY
name: vehicle
LR
isa
CATEGORY CATEGORY
name: road-vehicle l name: road-vehicle-part

COMPONents: (resriction ) =————

ass LYY

CATEGORY CATEGORY
name: car name: car-part

components: (TestriCtion ) e

i = \

CATEGORY CATEGORY CATEGORY CATEGORY
name: Plymouth name: car-seat name: carburetor name: carburetor-part
p (restriction)
. LX ] .
isa isa isa

CATEGORY CATEGORY CATEGORY

name: Satellite name: Sears-carburetor name: idle-adjust-screw

ees .oe

Figure 7: An incomplete part hierarchy.

in the figure. For example, we would like idle-adjust-screw to be a sub-
category of car-part, and we would like carburetor to be a sub-category of
road-vehicle-part. The situation can be rectified by adding two isa links -
one from car-part to road-vehicle-part, and one from carburetor-part
to car-part. However, we do not wish to force the knowledge base builder
to make all such relations explicit. The user should be able to declare that
the part frames in the figure should “behave correctly as components with
respect to transitivity relations” and the system should make the details
explicit; this is the function of aggregations.

An aggregation is created by providing the name of a slot, a new name for
the aggregation frame, and a set of “auxiliary” frames. The existence of an




7 AGGREGATIONS AND PART/WHOLE RELATIONS 18

aggregation causes the enforcement (at update time) of a topology constraint
which may be described as follows: the fillers of the given slot, for all isa
descendants of the aggregation, must themselves be isa descendants of the
aggregation. In addition, the fillers of the given slot, for all isa descendants
of all of the given auziliary frames, must also be isa descendants of the
aggregation. Note that the constraint says only that the specified fillers
must be isa descendants and not direct isa children; this allows PARKA to
keep the number of added links to a minimum by computing upper-bound
sets in the isa hierarchy.

In the given example we would create road-vehicle-part as an aggrega-
tion with slot components and auxiliary frame road-vehicle. (See Fig-
ure 8.) This would ensure that car-part becomes an isa descendant of
road-vehicle-part. In addition, car-part would be an aggregation (with
slot components and auxiliary frame car) so that carburetor-part would
be made to be an isa descendant of car-part. (The PARKA code for this
example is given in Appendix B.) Depending on the order in which these
aggregations are created, there might also be a (redundant) isa link from
carburetor-part to road-vehicle-part. The existence of such a redundant
link cannot change the properties inherited by carburetor-part, however,
because car-part will still be closer to carburetor-part by the inferential
distance ordering.

In general, then, we can represent component-integral object relations
(and perhaps other part/whole relations) by specifying the “parts” frame
as an aggregation with the “whole” frame as an auxiliary frame and the
part/whole relation-type (in this case components) as the slot. The desired
transitivities will then be made explicit and maintained across updates by
the system.

Although this mechanism goes a long way in solving part/whole repre-
sentation problems, there are still (at least) two deficiencies. One problem is
that a query for the value of the components slot of the vehicle frame in our
example will return NO-VALUE. This problem can be handled by giving all
root frames in the isa hierarchy components slots filled with appropriate ag-
gregations, although we are exploring more elegant local solutions. A second
and more subtle problem involves handling deletions of isa links in the wake of
user-initiated changes. Returning to our example, if the components slot
of carburetor is removed then we will no longer want carburetor-part




7 AGGREGATIONS AND PART/WHOLE RELATIONS

CATEGORY

name: vehicle

CATEGORY

AGGREGATION

name: road-vehicle

name: road-vehicle-part

COMPONENLS; (FESriCtion e

isa

CATEGORY

AGGREGATION

name: car

name: car-part

COmPonents: (restriction ) am

[RY]

name: Satellite

isa
CATEGORY CATEGORY CATEGORY JAGGREGATION
name: Plymouth name: Car-sest name: carburetor J. name: carburetor-part
components: (restriction)
.oe coe vee o
A

isa isa isa

CATEGORY CATEGORY CATEGORY

name: Scars-carburetor

name: idle-adjust-screw

Figure 8: The corrected part hierarchy with aggregations.




8 CONCLUSIONS 20

to be an isa descendant of car-part (or of road-vehicle-part). However,
if the user had ezplicitly created an isa link from, say, idle-adjust-screw
to car-part then we would like for that link to remain unaffected by the
above-mentioned change. In short, we want our topology constraints to be
able to undo only those changes which they have themselves made. In the
given case this can be accomplished by marking isa links as “user-created”
or “system-created”.

8 Conclusions

PARKA is primarily an experiment in the use of massive parallelism in sym-
bolic knowledge representation. We have managed to capture much of the
representational power of previous frame and semantic net systems, while re-
alizing impressive gains in speed and efficiency, by replacing implicit or pro-
cedural knowledge with topology constraints maintained across updates. We
have also managed to provide semantically sophisticated representational fa-
cilities within the PARKA framework, most notably in the treatment of mul-
tiple inheritance and in the mechanism for the representation of part/whole
relations.

Nonetheless, PARKA still has several weaknesses. In comparison to other
systems, the following capabilities (some of which have been discussed above)
are noticeably absent: 1. There is no facility for the attachment of general
procedures to frames (as in [1], [11], {5], [18]). 2. The support for the
representation of numeric values (i.e., cardinality facets, numeric sub-ranges,
etc.) is very weak (in contrast to, for example, [11]). 3. We have provided
no conventions for the interpretation of sub-categorizations as ezhaustive or
mutually exclusive. 4. There is no easy way to represent relations amongst
slots, or to create a taxonomy of the relations represented by slots (in contrast
to [22] or to some extent [3]). 5. There is no mechanism for specifying the

interdependency of restrictions on different slots of the same frame (again.
see [3] and [22]).

Still, the capabilities that PARKA does have are at least as powerful as
those of some of the “frame” systems that have been used in past Al work.

PARKA builds such representational facilities into a very fast Connection
Machine implementation and hence is unique among knowledge representa-




A THE SYNTAX OF THE PARKA LANGUAGE 21

tion tools. Further, the PARKA project is still in its infancy and many of
the above-mentioned deficiencies may be corrected in the future.

A The Syntax of the PARKA Language

The following gives the syntax of PARKA’s most important user functions.
; ; CONSTANTS

(defconstant *NO-VALUE* ’*K0O-VALUE#

"#NO~VALUE* is used in PARKA to indicate that a slot
HAS NO VALUE, as opposed to having the value nil. The
symbol *NO-VALUE* evaluates to itself.")

;; BASIC FRAME CREATION, DELETION, PRINTING, AND ACCESS FUNCTIONS

(detun init-PARKA ()
"Clears the PARKA knowledge base." ...)

(defun make-individual (name)
"Creates an individual frame with the given name
and adds it to the PARKA knowledge base." ...)

(defun make-category (name)
“Creates a category frame with the given name
and adds it to the PARKA knowledge base." ...)

(detmacro f (name)
"Returns the frame structure that has the given name as
its frame-name." ...)

;i reader macros define an alternative (preferred)
;3 syntax for user—entry of frames using square brackets:
;; [too] = (£ foo) => the frame named foo

(defun names-a-frame (n)
"Returns t if the given name is the name of a frame in the
current PARKA knowledge base.”" ...)

(defun frame-p (f)
"Returns t if f is a frame; returns nil otherwise." ...)




A THE SYNTAX OF THE PARKA LANGUAGE 22

(defun individual-p (frame)
"Returns t if the given frame is an individual.” ...)

(defun category-p (frame)
"Returns t if the given frame is a category" ...)

(defun delete-frame (f)

"Deletes a frame and all references to it in other frames.
The last deleted frame may be restored with restore-last-frame.
Delete-frame always returms t." ...)

(defun restore~last-frame ()
"Restores the last deleted frame (and all references to it)
to the knowledge base. Restore-last-frame returns t unless
there is no frame to be restored - in that case nil is returned." ...)

(defun print-frame (f &optional stream level)

"Prints a frams structure in a readable form. This is
the :print-function for frame structures. It prints only
those slot values that are explicit at the given frame.™ ...)

(defun print-all-frames ()
"Prints all frames in the PARKA knowledge base in a
readable form." ...)

;; FUNCTIONS FOR ISA LINK CREATION DELETION, ETC.

(defun isa (frame category)
"Creates an isa link from the first argument to the second.
If the arguments are not of the proper type an error is signaled.
If the arguments are of the proper type then isa always returms t." ...)

(defun delete-isa (frame category)
"Deletes any existing isa link from the first argument to the
second. Delete~isa always returns t." ...)

(defun children (frame)
"Returns a list of all of the (immediate) isa children
of the given frame" ...)

(defun parents (frame)
"Returns a list of all of the (immediate) isa parents
of the given frame" ...)




A THE SYNTAX OF THE PARKA LANGUAGE

(defun child-p (f1 £2)
"Returns t if frame f1 is an (immediate) isa child of
frame 2" ...)

(defun parent-p (f1 £2)
“Returns t if frame f1 is an (immediate) isa parent of
frame £2" ...)

(defun descendants (frame)
"Returns a list of all isa descendants of the given frame." ...

{defun ancestors (frame)
"Returns a list of all isa ancestors of the given frame." ...)

(defun descendant (f1 £2)
"Returns t if frame f1 is an isa descendant of frame
£2. Returns nil otherwise." ...)

(defun ancestor (f1 f£2)
"Returns t if frame f1 is an isa ancestor of frame
£2. Returns nil otherwise." ...)

; FUNCTIONS FOR SLOT FILLING AND UNFILLING, VALUE ACCESS, ETC.

(defun fill-slot (frame slot value &optional slot-type)
"Explicitly fills the given slot of the given frame

with the given value, and makes that slot to be of

type slot-type. Any previous value for the given

slot is lost. Fill-slot always returns t." ...)

(defun unfill-slot (frame slot)
“If the given frame is explicitly valued for the given slot
then this deletes the explicit valuation; otherwise it has no

effect. Returns t if a valuation was deleted and nil otherwise." ...

(defun xval-p (frame slot)

"Returns t if the given frame has an explicit value for
the given slot, and nil otherwise. In this context restrictions
do not count as explicit values." ...)

(defun xrest-p (frame slot)
"Returns t if the given frame has an explicit RESTRICTION for
the given slot, and nil otherwise." ...)

23




A THE SYNTAX OF THE PARKA LANGUAGE 24

(defun xrest (frame slot)
"If the given slot has an explicit restriction then that
restriction is returned; otherwise the value is nil." ...)

(defun restrictions (frame slot)

"Returns a list of restrictions which apply to the given
slot for the given frame. The value returned is a list of the closest
explicit restriction slot fillers on each upward isa path. If the given
frame has an explicit restriction then a singleton list of that
restriction is returned." ...)

(defun meets-restrictions (frame slot val)
“"Returns t if val is an isa descendant of all restrictions of slot
for frame." ...)

(defun definitional (frame slot)

"Returns t if the given frame itself has, or is
an isa descendant of a frame that has, a definitional
value for the given slot.” ...)

(defun definitional-val (frame slot)

"If the given frame itself has a definitional value for the
given slot, or if it is an isa descendant of a frame that has a
definitional value for the given slot, then this returns that
definitional value." ...)

; ; TOP LEVEL SLOT-VALUE QUERIES

(defun slot-value (frame slot)

"Returns the value of the given slot for the given frame.
If the given frame is not explicitly valued for the given slot
then an inherited value is computed according to the inferential
distance ordering. Note that Restriction values are ignored in
this computation.” ...)

(defun frames-with (slot value)
"Returns a list of all frames in the system which have - explicitly
or inherited - the given value for the given slot." ...)

(defun frames-with-some (slot value)

"Returns a list of all frames in the system which have a value
(explicit or inherited) for the given slot which is a SUPER-CATEGORY
of the given value.” ...)




A THE SYNTAX OF THE PARKA LANGUAGE 25

(defun frames-with-all (slot value)

"Returns a list of all frames in the system which have a value
(explicit or inherited) for the given slot which is a SUB-CATEGORY
of the given value." ...)

;+ SET-CONSTRUCTOR FRAME CREATION AND ACCESS FUNCTIONS

(defun make-intersection (name &rest constituents)

"Creates a frame with the given name that will be maintained
across updates to always represent the set-theoretic intersection of
the frames provided as constituents." ...)

(defun intersection-p (f)
"Returns t if f is an intersection frame; returns nil otherwise." ...)

(defun all-intersections ()
“"Returns a list of all intersection frames in the PARKA knowledge
base." ...)

(defun make-union (name &rest constituents)

"Creates a frame with the given name that will be maintained
across updates to always represent the set-theoretic union of
the frames provided as constituents." ...)

(defun union-p (f)
"Returns t if f is a union frame; returns nil otherwise.”" ...)

(defun all-unions ()
"Returns a list of all union frames in the PARKA knowledge
base." ...)

(defun make-set-difference (name pos neg)

"Creates a frame with the given name that will be maintained
across updates to always represent the set-theoretic set difference
of the pos and neg categories" ...)

(defun set-difference-p (T)
"Returns t if f is a set-difference; returns nil otherwise." ...)

(defun all-set-differences ()
"Returns a list of all set-difference frames in the PARKA knowledge

base." ...)

;i AGGREGATION FRAME CREATION AND ACCESS FUNCTIONS




B CODE FOR THE CAR PARTS EXAMPLE 26

(defun make-aggregation (name ag-slot &rest aux-frames)

"Creates a frame with the given name which maintains an aggregation
topology constraint with respect to the given ag-slot and the given
aux-frames." ...)

(defun aggregation-p (f)
"Returns t if f is an aggregation frame; returms nil otherwise." ...)

(defun all-aggregations ()
“Returns a list of aggregation frames in the PARKA knowledge
base.”" ...)

;; BATCH UPDATE FACILITY

(defun batch-update (path)

"BATCH-UPDATE should be used whenever the user wishes to create a large
knowledge base from a file of definition forms. BATCH-UPDATE loads the
file specified in the path argument with no update checking, and then
attempts to satisfy all topology constraints. This is comsiderably
faster than executing a long sequence o* . . aal (update-checked) updates."

.2)
;33 USER OPTION

(defvar *update-verbose* t
"If *update-verbose* is non-nil then the update procedures will
send notifications of various actions to standard output.")

B Code for the Car Parts Example

The following code creates the structures described in the Aggregations sec-
tion and diagramed in figure 8.

(make-category ’vehicle)
(make-category ’'road-vehicle)
(isa [road-vehicle] [vehicle])
(make-category ’car)

(isa [car] [road-vehicle])
(make-category ’plymouth)
(isa [plymouth] [car])
(make-category ’satellite)




REFERENCES 27

(isa [satellite] (plymouth])

(make-aggregation ’'road-vehicle-part ’'components [road-vehicle])
(f£ill-slot [road-vehicle] ’components [road-vehicle-part] ’'restriction)
(make-aggregation ’car-part ’components [car])

(£iil-slot [car] ’components [car-part] ’restriction)
(make-category ’seat)

(isa [seat] [car-part])

(make-zategory ’'carburetor)

(isa [carburetcr] [car-part])

(make-category ’sears-carb)

(isa [sears-carb] [carburetor])

(make-aggregation ’carb-part ’components [carburetor])
(fill-slot [carburetor] ’commonents [carb-part] ’restriction)
(make-category ’idle-adjust-screw)

(isa [idle-adjust-screw] [carb-part])

References

(1]

[2]

4]

(5]

Bobrow, Daniel G., and Winograd, Terry, “An Overview of
KRL, a Knowledge Representation Language,” Cognitive Sci-
ence 1 (1), 1977, 3-46.

Brachman, Ronald J., Fikes, Richard E., and Levesque, Hector
J., “KRYPTON: a Functional Approach to Knowledge Repre-
sentation,” FLAIR Technical Report No. 16, Fairchild Labora-
tory for Artificial Intelligence Research, Palo Alto, CA, May,
1983.

Brachman, Ronald J., and Schmolze, James G., “An Overview
of the KL-ONE Knowledge Representation System,” Cognitive
Science 9, 1985, 171-216.

Brachman, Ronald J., ““I Lied about the Trees.” Or, Defaults
and Definitions in Knowledge Representation,” Al Magazine.
Fall, 1985, 80-93.

Charniak, Eugene, Reisbeck, Christopher K., McDermott.
Drew V., Meehan, James R., Artificial Intelligence Program-
ming Lawrence Erlbaum Associates, Publishers. New Jersey.
1987.




REFERENCES 28

[6]

[10]

[11]

[12]

(13]

(14]

Evett, Matthew, Spector, Lee, and Hendler, James, “Knowl-
edge Representation on the Connection Machine,” Supercom-
puting 89: Proceedings of the Conference, Reno, Nevada, 1989,
published by ACM, New York, New York, 1989.

Evett, Matthew, Spector, Lee, and Hendler, James, “PARKA:
A Symbolic Knowledge Representation System on the Connec-
tion Machine,” (forthcoming) Technical Report, Department of

Computer Science, University of Maryland, College Park, MD,
1990.

Fikes, Richard, and Kehler, Tom, “The Role of Frame-Based
Representation in Reasoning,” Communications of the ACM.,
September 1985, Volume 28, Number 9, 904-920.

Haase, Kenneth W. Jr., “TYPICAL - A Knowledge Representa-
tion System,” MIT Artificial Intelligence Laboratory Technical
Report 988, 1987.

Hayes, Patrick J., “Some Problems and Non-Problems in Repre-
sentation Theory,” Proc. AISB Summer Conference, University
of Sussex, 1974, 63-79.

IntelliCorp, IntelliCorp KEE Software Development System
User’s Manual, 1985.

Kripke, Saul A., Meaning and Necessity, Harvard University
Press, Cambridge, Massachusetts, 1972.

Levesque, Hector J., and Brachman, Ronald J., *A Funda-
mental Tradeoff in Knowledge Representation and Reasoning
(Revised Version),” in Readings in Knowledge Representation.
Ronald J. Brachman and Hector J. Levesque, editors. Morgan
Kaufmann Publishers, Inc., 1985.

Minsky, M., “A Framework for Representing Knowledge.” in
Mind Design, J. Haugeland, editor, The MIT Press. Cambridge.
MA, 1981, 95-128.




REFERENCES 29

(15]

(16]

[17]

(18]

[19]

[20]

[21]

22]

[23]

[24]

Nebel, Bernhard, “Computational Complexity of Terminolog-
ical Reasoning in BACK,” in Artificial Intelligence 34 (1988),
371-383, 1988.

Patel-Schneider, Peter F., “Undecidability of Subsumption in
NIKL,” Artificial Intelligence 39 (1989), 263-272.

Putnam, Hilary, “The Meaning of ‘Meaning,” ” in Language,
Mind, and Knowledge, K. Gunderson, editor, Minnesota Stud-
les in the Philosophy of Science, 7, University of Minnesota
Press, 1975.

Roberts, Bruce R., and Goldstein, Ira P., “The FRL Manual,”
Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Memo 409, September 1977.

Shastri, Lokendra, Semantic Networks: An Evidential Formal-
ization and its Connectionist Realization, Morgan Kaufman,
1988.

Stefik, Mark, and Bobrow, Daniel G., “Object-Oriented Pro-
gramming: Themes and Variations,” in Al Magazine, Winter.
1986, 40-62.

Touretzky, D.S., The Mathematics of Inheritance Systems,
Morgan Kaufmann Publishers, Inc., Los Altos, CA. 1986.

Wilensky, Robert, “Some Problems and Proposals for Knowl-
edge Representation,” Report No. UCB/CSD 86/294. Univer-
sity of California, Be keley, May 1986.

Winston, Morton E., Chaffin, Roger, and Herrmann, Douglas.
“A Taxonomy of Part-Whole Relations,” Cognitive Science 11.
417-444, 1987.

Woods, William A., “What’s in a link: Foundations for Seman-
tic Networks,” in Representation and Understanding: Studies
in Cognitive Science, D. G. Bobrow and A. M. Collins, editors,
Academic Press, New York, 1975, 35-82.




